Муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти «Школа с углубленным изучением отдельных предметов № 45»

Утверждено

Директор МБУ «Школа » (Приказ от 01.09.2020 г. »

Мартина (Сертина) (Сертин

Принято

Протокол педагогического совета № 13 от $31.08.2020 \, \Gamma$.

РАБОЧАЯ ПРОГРАММА

по предмету «Физика»

(углубленный уровень)

10-11 классы Количество часов: Общее: 340 ч. В неделю: 5 ч.

> Составитель: учитель физики Бабурина Жанна Анатольевна

Рабочая программа учебного предмета «Физика» (углубленный уровннь) на уровне среднего общего образования разработана на основе следующих документов:

- Федеральный закон «Об образовании в Российской Федерации» от 29.12.2012 № 273

 Ф3;
- требования к результатам среднего общего образования, утвержденные Федеральным государственным образовательным стандартом (Приказ Министерства образования и науки РФ от 17 мая 2012 г. № 413 «Об утверждении федерального государственного образовательного стандарта среднего общего образования»; с изменениями и дополнениями Минобрнауки от 29 декабря 2014г. № 1645, от 31 декабря 2015 г. № 1578, от 29 июня 2017г. № 613);
- Основная образовательная программа среднего общего образования;
- Основная образовательная программа среднего общего образования МБУ «Школа № 45».

Рабочая программа по физике для средней (полной) общеобразовательной школы реализуется при использовании учебников «Физика» для 10 и 11 классов линии «Классический курс» авторов Г.Я. Мякишева, Б.Б. Буховцева, Н.Н. Сотского, В.М. Чаругина под редакцией Н. А. Парфентьевой.

Примерная программа учебного предмета «Физика» направлена на формирование у обучающихся функциональной грамотности и метапредметных умений через выполнение исследовательской и практической деятельности.

В системе естественно-научного образования физика как учебный предмет занимает важное место в формировании научного мировоззрения и ознакомления обучающихся с методами научного познания окружающего мира, а также с физическими основами современного производства и бытового технического окружения человека; в формировании собственной позиции по отношению к физической информации, полученной из разных источников.

Успешность изучения предмета связана с овладением основами учебно исследовательской деятельности, применением полученных знаний при решении практических и теоретических задач.

В соответствии с $\Phi \Gamma O C$ COO образования физика может изучаться на базовом и углубленном уровнях.

1. Планируемые результаты

В результате изучения учебного предмета «Физика» на уровне среднего общего образования:

Выпускник на углубленном уровне научится:

- объяснять и анализировать роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
 - характеризовать взаимосвязь между физикой и другими естественными науками;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- самостоятельно конструировать экспериментальные установки для проверки выдвинутых гипотез, рассчитывать абсолютную и относительную погрешности;
 - самостоятельно планировать и проводить физические эксперименты;

- решать практико-ориентированные качественные и расчетные физические задачи с опорой как на известные физические законы, закономерности и модели, так и на тексты с избыточной информацией;
- объяснять границы применения изученных физических моделей при решении физических и межпредметных задач;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки.

Выпускник на углубленном уровне получит возможность научиться:

- проверять экспериментальными средствами выдвинутые гипотезы, формулируя цель исследования, на основе знания основополагающих физических закономерностей и законов;
- описывать и анализировать полученную в результате проведенных физических экспериментов информацию, определять ее достоверность;
- понимать и объяснять системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- решать экспериментальные, качественные и количественные задачи олимпиадного уровня сложности, используя физические законы, а также уравнения, связывающие физические величины;
- анализировать границы применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов;
- формулировать и решать новые задачи, возникающие в ходе учебно исследовательской и проектной деятельности;
- усовершенствовать приборы и методы исследования в соответствии с поставленной задачей;
- использовать методы математического моделирования, в том числе простейшие статистические методы для обработки результатов эксперимента.

2. Содержание программы

Изучение физики на углубленном уровне включает расширение предметных результатов и содержание, ориентированное на подготовку к последующему профессиональному образованию.

Изучение предмета на углубленном уровне позволяет сформировать у обучающихся физическое мышление, умение систематизировать и обобщать полученные знания, самостоятельно применять полученные знания для решения практических и учебно-исследовательских задач; умение анализировать, прогнозировать и оценивать с позиции экологической безопасности последствия бытовой и производственной деятельности человека, связанной с использованием источников энергии.

В основу изучения предмета «Физика» на базовом и углубленном уровнях в части формирования у обучающихся научного мировоззрения, освоения общенаучных методов познания, а также практического применения научных знаний заложены межпредметные связи в области естественных, математических и гуманитарных наук.

Углубленный уровень 10 класс

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Научный метод познания мира. Взаимосвязь между физикой и другими естественными науками. Методы научного исследования физических явлений. Погрешности измерений физических величин. Моделирование явлений и процессов природы. Закономерность и случайность. Границы применимости физического закона. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Предмет и задачи классической механики. Кинематические характеристики механического движения. Модели тел и движений. Равноускоренное прямолинейное движение, свободное падение. Движение тела, брошенного под углом к горизонту. Движение точки по окружности. Поступательное и вращательное движение твердого тела. Взаимодействие тел. Принцип суперпозиции сил. Инерциальная система отсчета. Законы механики Ньютона. Законы Всемирного тяготения, Гука, сухого трения. Движение небесных тел и их искусственных спутников. Явления, наблюдаемые в неинерциальных системах отсчета. Импульс силы. Закон изменения и сохранения импульса. Работа силы. Закон изменения и сохранения энергии. Равновесие материальной точки и твердого тела. Условия равновесия твердого тела в инерциальной системе отсчета. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов. Закон сохранения энергии в динамике жидкости и газа. Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. Вынужденные колебания, резонанс. Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Контрольные работы № 1-5 – 5 часов

Лабораторные работы №1 « Изучение движения тела брошенного горизонтально»

Лабораторные работы №2 « Измерение жесткости пружины»

Лабораторные работы №3 « Измерение коэффициента трения скольжения»

Лабораторные работы №4 « Изучение закона сохранения механической энергии»

Лабораторные работы №5 « Изучение равновесия тела под действием нескольких сил».

Молекулярная физика и термодинамика

Предмет и задачи молекулярно-кинетической теории (МКТ) и термодинамики.

Экспериментальные доказательства МКТ. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Связь между давлением и средней кинетической энергией поступательного теплового движения молекул идеального газа. Модель идеального газа в термодинамике: уравнение Менделеева—Клапейрона, выражение для внутренней энергии. Закон Дальтона. Газовые законы. Агрегатные состояния вещества. Фазовые переходы. Преобразование энергии в фазовых переходах. Насыщенные и ненасыщенные пары. Влажность воздуха. Модель строения жидкостей. Поверхностное натяжение. Модель строения твердых тел. Механические свойства твердых тел.Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Адиабатный процесс. Второй закон термодинамики. Преобразования энергии в тепловых машинах. КПД тепловой машины. Цикл Карно. Экологические проблемы теплоэнергетики.

Контрольные работы № 6-7- 2 часа

Лабораторные работы №6 « Измерение температуры жидкостными и цифровыми термометрами»

Лабораторные работы №7 « Экспериментальная проверка закона Гей – Люссака» Электродинамика

Предмет и задачи электродинамики. Электрическое взаимодействие. Закон сохранения электрического заряда. Закон Кулона. Напряженность и потенциал электростатического поля. Принцип суперпозиции электрических полей. Разность потенциалов. Проводники и диэлектрики в электростатическом поле. Электрическая емкость. Конденсатор. Энергия электрического поля. Постоянный электрический ток. Электродвижущая сила (ЭДС). Закон Ома для полной электрической цепи. Электрический ток в металлах, электролитах, полупроводниках, газах и вакууме. Плазма. Электролиз. Полупроводниковые приборы. Сверхпроводимость.

Контрольные работы № 8-9- 2 часа

Лабораторные работы №8 « Последовательное и параллельное соединение проводников»

Лабораторные работы №9 «Измерение ЭДС источника тока»

Углубленный уровень 11 класс Электродинамика

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Магнитное поле проводника с током. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Поток вектора магнитной индукции. Явление электромагнитной индукции. Закон электромагнитной индукции. ЭДС индукции в движущихся проводниках. Правило Ленца. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля. Магнитные свойства вещества.

Контрольные работы № 1-2- 2 часа

Лабораторные работы №1 « Наблюдение действия магнитного поля на ток» Лабораторные работы №2 «Изучение явления электромагнитной индукции» Механические колебания

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. Вынужденные колебания, резонанс. Поперечные и продольные волны. Энергия волны. Интерференция и дифракция волн. Звуковые волны.

Лабораторные работы №3 « Определение ускорения свободного падения при помощи маятника»

Электромагнитные колебания.

Колебательный контур. Свободные электромагнитные колебания. Вынужденные электромагнитные колебания. Резонанс. Переменный ток. Конденсатор и катушка в цепи переменного тока. Производство, передача и потребление электрической энергии. Элементарная теория трансформатора. Электромагнитное поле. Вихревое электрическое поле. Электромагнитные волны. Свойства электромагнитных волн. Диапазоны электромагнитных излучений и их практическое применение. Принципы радиосвязи и телевидения.

Контрольные работы №3- 4- 2 часа

Геометрическая оптика.

Прямолинейное распространение света в однородной среде. Законы отражения и преломления света. Полное внутреннее отражение. Оптические приборы. Волновые свойства света. Скорость света. Интерференция света. Когерентность. Дифракция света. Поляризация света. Дисперсия света. Практическое применение электромагнитных излучений.

Контрольные работы № 5-6- 2 часа

Лабораторные работы №4 « Определение показателя преломления стекла»

Лабораторные работы №5 « Определение оптической силы и фокусного расстояния собирающей линзы»

Лабораторные работы №6 « Измерение длины световой волны»

Лабораторные работы №7 « Оценка информационной емкости компакт -диска» Основы специальной теории относительности

Инвариантность модуля скорости света в вакууме. Принцип относительности Эйнштейна. Пространство и время в специальной теории относительности. Энергия и импульс свободной частицы. Связь массы и энергии свободной частицы. Энергия покоя.

Контрольные работы № 7- 1 часа

Квантовая физика. Физика атома и атомного ядра

Предмет и задачи квантовой физики. Тепловое излучение. Распределение энергии в спектре абсолютно черного тела. Гипотеза М. Планка о квантах. Фотоэффект. Опыты А.Г. Столетова, законы фотоэффекта. Уравнение А. Эйнштейна для фотоэффекта. Фотон. Опыты П.Н. Лебедева и С.И. Вавилова. Гипотеза Л. де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Дифракция электронов. Давление света. Соотношение неопределенностей Гейзенберга. Модели строения атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Н. Бора. Спонтанное и вынужденное излучение света. Состав и строение атомного ядра. Изотопы. Ядерные силы. Дефект массы и энергия связи ядра. Закон радиоактивного распада. Ядерные реакции, реакции деления и синтеза. Цепная реакция деления ядер. Ядерная энергетика. Термоядерный синтез. Элементарные частицы. Фундаментальные взаимодействия. Ускорители элементарных частиц.

Контрольные работы № 8-9- 2 часа

Лабораторные работы №8 « Наблюдение сплошного и линейчатого спектра» Строение Вселенной

Применимость законов физики для объяснения природы космических объектов. Солнечная система. Звезды и источники их энергии. Классификация звезд. Эволюция Солнца и звезд. Галактика. Другие галактики. Пространственно-временные масштабы наблюдаемой Вселенной. Представление об эволюции Вселенной. Темная материя и темная энергия.

Перечень практических и лабораторных работ

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - сравнение масс (по взаимодействию);
 - измерение сил в механике;
 - измерение температуры жидкостными и цифровыми термометрами;
 - оценка сил взаимодействия молекул (методом отрыва капель);
 - измерение термодинамических параметров газа;
 - измерение ЭДС источника тока;
 - измерение силы взаимодействия катушки с током и магнита помощью электронных весов;
 - определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

- измерение ускорения;
- измерение ускорения свободного падения;
- определение энергии и импульса по тормозному пути;
- измерение удельной теплоты плавления льда;
- измерение напряженности вихревого электрического поля (принаблюдении электромагнитной индукции);
 - измерение внутреннего сопротивления источника тока;
 - определение показателя преломления среды;
 - измерение фокусного расстояния собирающей и рассеивающей линз;

- определение длины световой волны;
- определение импульса и энергии частицы при движении в магнитном поле (по фотографиям).

Наблюдение явлений:

- наблюдение механических явлений в инерциальных и неинерциальных системах отсчета;
- наблюдение вынужденных колебаний и резонанса;
- наблюдение диффузии;
- наблюдение явления электромагнитной индукции;
- наблюдение волновых свойств света: дифракция, интерференция, поляризация;
- наблюдение спектров;
- вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
 - исследование движения тела, брошенного горизонтально;
 - исследование центрального удара;
 - исследование качения цилиндра по наклонной плоскости;
 - исследование движения броуновской частицы (по трекам Перрена);
 - исследование изопроцессов;
 - исследование изохорного процесса и оценка абсолютного нуля;
 - исследование остывания воды;
 - исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
 - исследование зависимости силы тока через лампочку от напряжения на ней;
 - исследование нагревания воды нагревателем небольшой мощности;
 - исследование явления электромагнитной индукции;
 - исследование зависимости угла преломления от угла падения;
 - исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;
 - исследование спектра водорода;
 - исследование движения двойных звезд (по печатным материалам).

Проверка гипотез (в том числе имеются неверные):

- при движении бруска по наклонной плоскости время перемещения на определенное расстояния тем больше, чем больше масса бруска;
- при движении бруска по наклонной плоскости скорость прямо пропорциональна пути;
- при затухании колебаний амплитуда обратно пропорциональна времени;
- квадрат среднего перемещения броуновской частицы прямо пропорционален времени наблюдения (по трекам Перрена);
- скорость остывания воды линейно зависит от времени остывания;
- напряжение при последовательном включении лампочки и резистора не равно сумме напряжений на лампочке и резисторе;
- угол преломления прямо пропорционален углу падения;
- при плотном сложении двух линз оптические силы складываются;

Конструирование технических устройств:

- конструирование наклонной плоскости с заданным КПД;
- конструирование рычажных весов;
- конструирование наклонной плоскости, по которой брусок движется с заданным ускорением;
- конструирование электродвигателя;

- конструирование трансформатора;
- конструирование модели телескопа или микроскопа

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

Углубленный уровень 5 часов в неделю (170 часов в год)

№ п/п	Тема	Количество часов
I	Введение. Физика и естественно- научный метод познания природы	2ч
II	Механика	73 ч
1.	Кинематика	15 ч
2.	Законы динамики Ньютона	10 ч
3.	Силы в механике	16 ч.
4.	Законы сохранения импульса	7 ч.
5.	Закон сохранения механической энергии	11 ч
6.	Динамика вращательного движения абсолютно твердого тела	4 ч
7.	Статика	4 ч
8.	Основы гидромеханики	6 ч
III	Молекулярная физика и термодинамика	45 ч
1.	Основы МКТ	8 ч
2.	Уравнения состояния газа	12 ч
3.	Взаимные превращения жидкости и газа	3 ч
4.	Жидкости	3 ч
5.	Твердые тела	2 ч
6.	Основы термодинамики	17 ч

IV	Основы электродинамики	46 ч
1.	Электростатика	21 ч
2.	Законы постоянного тока	13 ч
3.	Электрический ток в различных средах	12 ч
V	Повторение	44
	Общее количество часов	170

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 11 класс Углубленный уровень 5 часов в неделю (170 часов в год)

№ п/п	Тема	Количество часов
I	Электродинамика (продолжение)	24 ч
1.	Магнитное поле	12 ч
2.	Электромагнитная индукция	12 ч
II	Колебания и волны	48 ч
1.	Механические колебания	9 ч
2.	Электромагнитные колебания	18 ч
3.	Механические волны	9 ч
4.	Электромагнитные волны	12 ч
III	Оптика	31 ч
1.	Геометрическая оптика	16 ч
2.	Волновая оптика	12 ч
3.	Излучение и спектры	3 ч

IV	Основы специальной теории относительности.	7ч
V	Квантовая физика	44 ч
1.	Световые кванты	10 ч
2.	Атомная физика	7 ч
3.	Физика атомного ядра	21 ч
4.	Элементарные частицы	6 ч
VI	Строение Вселенной	11ч
1.	Солнечная система. Строение Вселенной	11ч
VII	Повторение	5ч
	Общее количество часов	170